"Double Activation" of Constrained Geometry and ansa-Metallocene Group 4 Metal Dialkyls: Synthesis, Structure, and Olefin Polymerization Study of Monoand Dicationic Aluminate Complexes

Eugene Y.-X. Chen, *,† William J. Kruper, Gordon Roof, and David R. Wilson

The Dow Chemical Company, Corporate R&D Midland, Michigan 48674 Received July 19, 2000

Strong organo-Lewis acids such as $B(C_6F_5)_3$ and a number of its derivatives¹ play vital roles in generating highly active, singlesite homogeneous olefin polymerization catalysts.² In sharp contrast, the aluminum analogue, $Al(C_6F_5)_3$,³ has attracted much less attention, despite its higher alkide affinity.^{4–6} Bochmann et al.⁵ have disclosed that, unlike relatively stable $Cp_{22}ZrMe^+MeB(C_6F_5)_3^$ complexes⁷ derived from methide abstraction from the zirconocene dimethyl by $B(C_6F_5)_3$,⁸ the aluminum analogue undergoes very facile C_6F_5 -transfer to Zr above 0 °C to form $Cp_2ZrMe-(C_6F_5)$, resulting in diminished polymerization activity.

Cocatalytic systems derived from Al(C_6F_5)₃ in combination with a second component for high-temperature, homogeneous solution olefin polymerization processes have been previously described.⁹ We communicate here the very unusual cocatalytic features of Al(C_6F_5)₃.¹⁰ These attributes include the unprecedented "double activating" ability of Al(C_6F_5)₃ for the formation of dicationic group 4 constrained geometry¹¹ and *ansa*-metallocene¹² bisaluminate complexes. In contrast to the B(C_6F_5)₃ activation, use of multiple equivalents of Al(C_6F_5)₃ substantially enhances exothermicities and efficiencies of olefin polymerization catalyzed by the constrained geometry and *ansa*-metallocene catalysts.

While donor-stabilized dicationic group 4 metal (M) complexes with a general formula of $[Cp_2MD_2]^{2+}X^{-2}$ (D = neutral donor

(1) For recent reviews, see: (a) Chen, E. Y.-X.; Marks, T. J. Chem. Rev. 2000, 100, 1391–1434. (b) Lupinetti, A. J.; Strauss, S. H. Chemtracts: Inorg. Chem. 1998, 26, 565–595. (c) Piers, W. E.; Chivers, T. Chem. Soc. Rev. 1997, 26, 345–354.

(2) For a special review issue, see: Gladysz, J. A., Ed. Chem. Rev. 2000, 100, 1167-1682.

(3) Biagini, P.; Lugli, G.; Abis, L.; Andreussi, P. U.S. Pat. 5,602269, 1997. (4) Computing the methide affinity of $B(C_6F_5)_3$ and $Al(C_6F_5)_3$ using the B3LYP/6-31G(d) level for energies and HF/3-21G for geometries gives affinities of -135.6 and -146.3 kcal/mol, respectively. Storer, J. W. (Dow Chemical). Personal communication.

(5) For an μ-Me complex derived from Cp₂ZrMe₂, see: Bochmann, M.; Sarsfield, M. J. *Organometallics* **1998**, *17*, 5908–5912.

(6) For a zwitterionic complex derived from a diene complex, see: Cowley, A. H.; Hair, G. S.; McBurnett, B. G.; Jones, R. A. *Chem. Commun.* **1999**, 437–438.

(7) Yang, X.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. 1994, 116, 10015–10031.

(8) (a) Massey, A. G.; Park, A. J. J. Organomet. Chem. **1964**, 2, 245–250. (b) Massey, A. G.; Park, A. J.; Stone, F. G. A. Proc. Chem. Soc. **1963**, 212–212.

(9) (a) Chen, E. Y.-X.; Kruper, W. J.; Roof, G. PCT Int. Appl. WO 00/ 09515, 2000. (b) Chen, E. Y.-X.; Kruper, W. J.; Roof, G.; Schwartz, D. J.; Storer, J. W. PCT Int. Appl. WO 00/09514, 2000.

(10) For patent applications, see: (a) Chen, E. Y.-X. PCT Int. Appl. WO 00/09524, 2000. (b) Chen, E. Y.-X.; Kruper, W. J.; Nickias, P. N.; Wilson, D. R. PCT Int. Appl. WO 00/09523, 2000. International filing date: June 11, 1999.

(11) (a) Shapiro, P. J.; Cotter, W. D.; Schaefer, W. P.; Labinger, J. A.; Bercaw, J. E. J. Am. Chem. Soc. **1994**, 116, 4623–4640. (b) Okuda, J. Comments Inorg. Chem. **1994**, 16, 185–205. (c) Canich, J. M.; Hlatky, G. G.; Turner, H. W. PCT Appl. WO 9200333, 1992. (d) Stevens, J. C.; Timmers, F. J.; Wilson, D. R.; Schmidt, G. F.; Nickias, P. N.; Rosen, R. K.; Knight, G. W.; Lai, S. Eur. Pat. Appl. EP 416 815-A2, 1991. (e) Piers, W. E.; Shapiro, P. J.; Bunnel, E. E.; Bercaw, J. E. Synlett. **1990**, 2, 74–84.

(12) (a) Herrmann, W. A.; Rohrmann, J.; Herdtweck, E.; Spaleck, W.; Winter, A. Angew. Chem., Int. Ed. Engl. **1989**, 28, 1511–1512. (b) Wild, F. R. W. P.; Wasiucionek, M.; Huttner, G.; Brintzinger, H.-H. J. Organomet. Chem. **1985**, 288, 63–67. ligand; X = anion) are known,¹³ isolation and characterization of dicationic structures absent of donor ligands are challenging and of great interest. Green et al.¹⁴ recently reported NMR spectroscopic evidence for the formation of a dication-like zirconocene stabilized by metal-arene interactions by treating $(p-MeC_6H_4CMe_2Cp)_2ZrMe_2$ with 2 equiv of B(C₆F₅)₃ at -60 °C in CD₂Cl₂ which reverts to the monocationic species and neutral $B(C_6F_5)_3$ above -40 °C in solution. Most recently, Stephan et al.15 reported a crystallographically characterized non-Cp bisborate-zwitterionic complex $[(tBu_3P=N)_2Ti\{\mu-MeB(C_6F_5)_3\}_2]$ generated from the reaction of $[(tBu_3P=N)_2TiMe_2]$ with an excess of $B(C_6F_5)_3$ in CH_2Cl_2 . The formation of such a species in the presence of excess $B(C_6F_5)_3$ was considered to be a catalyst deactivation pathway, as the bis-borate adduct exhibits negligible polymerization activity while the corresponding mono-borate adduct is a very active catalyst.

Although the reaction of $B(C_6F_5)_3$ with either the constrained geometry titanium dimethyl Me₂Si(η^5 -Me₄C₅)(t-BuN)TiMe₂ (CGC-TiMe₂) or the ansa-metallocene dimethyl rac-Me₂Si(η^{5} -Ind)₂-ZrMe₂ (SBI-ZrMe₂) proceeds rapidly and quantitatively in hydrocarbon solvents to produce the corresponding monocationic complexes, reaction with an excess of $B(C_6F_5)_3$ does not affect the abstraction of the second CH_3^- group.¹⁶ This behavior is likewise observed for bis-Cp-type dimethyl zirconocenes⁷ and Cpbased titanocenes.¹⁵ However, unlike the reaction of Cp₂ZrMe₂ with Al(C₆F₅)₃, reaction of CGC-TiMe₂ and SBI-ZrMe₂ with 1 equiv of Al(C₆F₅)₃ proceeds cleanly in hydrocarbon solvents to produce the corresponding stable and isolable cationic complexes CGC-TiMe(μ -Me)Al(C₆F₅)₃ (1) and SBI-ZrMe(μ -Me)Al(C₆F₅)₃ (2), respectively.¹⁷ The substantially enhanced solution stability of these complexes ($t_{1/2} = 5$ and 16 days for 1 and 2, respectively, at room temperature) versus the bis-Cp analogue is attributable to stronger anion coordination to these sterically more open and coordinatively more unsaturated metal centers having ansabridged ligation. Singly activated species 1 and 2 exhibit lower olefin polymerization efficiencies than the borane analogues.

The crystal structure of complex 1^{18} reveals the pseudotetrahedral coordination sphere about Ti. The Ti-CH₃ (bridging) distance is 2.332(3) Å which is longer than the Ti-CH₃ (terminal) distance by 0.235 Å. The Ti-H₃C-Al vector is nearly linear with an angle of 169.0(2)°. Another noteworthy feature of complex **1** is that two of the bridging methyl hydrogens exhibit relatively close contacts to Ti, with Ti-H distances of 2.21(3) and 2.24(3) Å and acute Ti-C(bridging)-H angles of 71(2) and 73(2)°, indicative of α -agostic interactions, compared to a nonbonding distance of 2.36 (3) Å for the third methyl hydrogen atom.

The most striking feature of the abstractive chemistry of Al- $(C_6F_5)_3$ is its ability to effect the removal of the second metal methyl groups to form the corresponding dicationic bis-aluminate complexes CGC-Ti[$(\mu$ -Me)Al($C_6F_5)_3$]₂ (**3**) and SBI-Zr[$(\mu$ -Me)-Al($C_6F_5)_3$]₂ (**4**).¹⁷ Thus, addition of a second equivalent of Al-(C_6F_5)₃ to a toluene solution of **1** or **2** causes an immediate color change from yellow green **1** to orange **3** or from yellow **2** to deep red **4**. NMR spectroscopic data of **3** and **4** are consistent

[†]Current address: Department of Chemistry, Colorado State University, Fort Collins, CO 80523. E-mail: eychen@lamar.colostate.edu.

^{(13) (}a) Bondar, G. V.; Aldea, R.; Levy, C. J.; Jaquith, J. B.; Collins, S. *Organometallics* **2000**, *19*, 947–949. (b) Bosch, B. E.; Erker, G.; Fröhlich, R.; Meyer, O. Organometallics **1997**, *16*, 5449–5456. (c) Hollis, T. K.; Robinson, N. P.; Bosnich, B. J. Am. Chem. Soc. **1992**, *114*, 5464–5466. (d) Jordan, R. F.; Echols, S. F. Inorg. Chem. **1987**, *26*, 383–386. (e) Lasser, W.; Thewalt, U. J. Organomet. Chem. **1986**, *301*, 69–77.

 ⁽¹⁴⁾ Green, M. L. H.; Sassmannshausen, J. Chem. Commun. 1999, 115–116.
(15) Guérin, F.; Stephan, D. W. Angew. Chem., Int. Ed. 2000, 39, 1298–1300.

⁽¹⁶⁾ See Supporting Information for experimental and characterization details. (17) Extra caution should be exercised when handling $Al(C_6F_5)_3$ material

⁽¹⁷⁾ Extra cauton should be exercised when handling AI(CGF5)3 inaterial due to its thermal and shock sensitivity. Complete synthetic procedures and characterization details are given in the Supporting Information.

⁽¹⁸⁾ See Supporting Information for crystallographic data for 1.

with symmetry changes of the complexes from previously C_1 -symmetric **1** and **2** to C_s -symmetric **3** and to C_2 -symmetric **4**, as a result of bis-aluminate adduct formation.¹⁷

A crystallographic study confirms the structure of the doubly activated dicationic bis-aluminate complex 4 (Figure 1)¹⁹ in which the two Al(C_6F_5)₃ groups are almost symmetrically bound to the two bridging methyl groups. The two Zr-H₃C-Al vectors are close to linearity with angles of 163.3(2) and 169.7(1)°. The diionic character of 4 is unambiguously established by the Zr- CH_3 distances (2.431(2) Å and 2.454(2) Å) which are both substantially longer than the Zr-CH₃ (terminal) distances of 2.24-(2) Å in an F-bridged aluminate complex SBI-ZrMe⁺(PBA)⁻²⁰ and of 2.223(6) Å in $(Me_5C_5)_2ZrCH_3^+CH_3B(C_6F_5)_3^{-,7}$ and by the relatively "normal" Al–CH₃ distances (2.084(2) Å and 2.059(2) Å), compared to the average A1–C (aryl) distances (2.001(2) Å and 2.012(2) Å) in 4 and the Al-CH₃ distance (2.033(3) Å) in **1**. The positions of the hydrogen atoms of the μ -methyl groups in 4 were located and refined, and two of the three bridging methyl hydrogens of each μ -methyl group were slightly closer to the Zr center than the third by 0.17 Å, indicative of weak Zr-methyl α -agostic interactions.

To investigate the influence of the catalyst double activation on polymerization characteristics, ethylene and 1-octene were copolymerized at 140 °C using CGC-TiMe2 and SBI-ZrMe2 activated with one or multiple equivalents of $B(C_6F_5)_3$ and Al- $(C_6F_5)_3$, respectively.¹⁶ In varying the B($C_6F_5)_3$:pre-catalyst ratio from 1 to 4, polymerization characteristics are not noticeably affected, nor are the polymer properties (exotherm: 0.2–2.1 °C; efficiency: 1.22-1.43 g polymer/µg Ti; M_W: 76.5-66.1 K; density: 0.900–0.897). In contrast, variation of the $Al(C_6F_5)_3$: pre-catalyst ratio from 1 to 4 causes substantially increased both initial polymerization exothermicity (from 0.3 to 30.6 °C with the same amount of pre-catalyst or less) and overall polymerization efficiency (from 0.32 to 2.40 g polymer/ μ g Ti).²¹ Similar low-density elastomers were produced in all cases but with noticeably higher molecular weights (by \sim 50% with narrow PDI of 1.96–2.06), compared with polymers produced using $B(C_6F_5)_3$ activation. Likewise, similar polymerization behavior is observed with catalyst SBI-ZrMe₂, which, however, produced relatively high-density polymers (d = 0.926). Multiple equivalents of Al- $(C_6F_5)_3$ also very effectively activate rac-dimethylsilane-bis(2methyl-4-phenylindenyl)zirconium(II)-1,4-diphenyl-1,3-butadiene²² in a 0.25/0.125 μ mol activator/pre-catalyst ratio to produce isotactic polypropylene of $T_{\rm m} = 157.8$ °C with 4.46 $\times 10^6$ g polymer/g Zr efficiency at a 70 °C polymerization temperature,

Figure 1. Molecular structure of 4. The F atoms of the anion portion are not labeled for clarity.

compared to 0.14×10^6 g polymer/g Zr polymerization efficiency when activated with B(C₆F₅)₃ under similar conditions.

It is tempting to suggest that double activation lowers the initiation/propagation barriers via a pathway in which olefin inserts into either lengthened Ti–Me bond, followed by migration of the Al moiety back to the Lewis basic α -carbon (A). Alternatively,

one can also speculate on the equilibrium formation of an ion pair (**B**) having an μ -Me bridged dinuclear anion [(C₆F₅)₃Al– CH₃-Al(C₆F₅)₃]⁻ under high-temperature polymerization conditions. Although such species have not been detected in the activation chemistry of group 4 complexes, such anions paired with tantalocene cations have been observed and characterized by X-ray diffraction analysis in the activation of group 5 metallocenes.²³

Unlike $B(C_6F_5)_3$, $Al(C_6F_5)_3$ is capable of producing the dicationic constrained geometry and *ansa*-metallocene group 4 complexes which are far more efficient olefin polymerization catalysts than the corresponding mono-cationic catalysts.

Acknowledgment. We thank Carol Injasoulian of The Dow Chemical Company for propylene polymerization runs and Dr. Khalil A. Abboud of the University of Florida for the X-ray diffraction analyses.

Supporting Information Available: Experimental details, complete X-ray crystallographic data for complexes 1 and 4 (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

JA002654D

 ⁽¹⁹⁾ See Supporting Information for crystallographic data for 4.
(20) Chen, E. Y.-X.; Metz, M. V.; Li, L.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. 1998, 120, 6287–6305.

⁽²¹⁾ No scavengers were used for current studies, and presumably some Al(C₆F₅)₃ was consumed as scavenger. In a related study (see ref 9), when a scavenger was used, the efficiency of the polymerization with multiple equivalents of Al(C₆F₅)₃ can be greater than 4.0 × 10⁶ g polymer/g Ti. (22) Chen, E. Y.-X.; Campbell, R. E.; Devore, D. D.; Green, D. P.; Patton,

⁽²²⁾ Chen, E. Y.-X.; Campbell, R. E.; Devore, D. D.; Green, D. P.; Patton,J. T.; Soto, J.; Wilson, D. R. PCT Int. Appl. WO 99/46270.

⁽²³⁾ Chen, E. Y.-X.; Abboud, K. A. Organometallics 2000, 19, 5541-5543.